大象传媒

Edited Book Chapters

Zazkis, R. (accepted). Mathematics teachers in collaboration: A commentary. In H. Borko & D. Potari (Eds.), Teachers of mathematics working and learning in collaborative groups: ICMI Study 25. Springer.

Zazkis, R. (in press). Many faces of mathematical challenge. In R. Leikin (Ed.), Mathematical challenge for all. New York, NY: Springer.

Applebaum, A., & Zazkis, R. (in press). Mathematical challenge of seeking causality in unexpected results. In R. Leikin (Ed.), Mathematical challenge for all. New York, NY: Springer.

Zazkis, R. (2021). Transgressions in teacher education 鈥 stepping away from convention. In B. Pieronkiewicz (Ed.), Different perspectives on transgressions in mathematics and its education. Scientific Publishing House of the Pedagogical University, Krakiw.

Zazkis, R. & Marmur, O. (2021). Pedagogical tasks towards extending mathematical knowledge: Notes on the work of teacher educators. In M. Goos, & K. Beswick (Eds.), The learning and development of mathematics teacher educators: International perspectives and challenges. New York, NY: Springer.

Zazkis, R. (2020). Technology in mathematics teacher education: On trust and pitfalls. In Y. Kolikant, D. Martinovic & M. Milner-Bolotin (Eds.), STEM Teachers and Teaching in the Digital Era - Professional expectations and advancement in 21st Century Schools. (pp 243-259). New York, NY: Springer.

Zazkis, R. & Marmur, O. (2018). Groups to the rescue: Responding to situations of contingency. In N. Wasserman (Ed.), Connecting abstract algebra to secondary mathematics for secondary mathematics teachers. (pp. 363-382). New York, NY: Springer.

Zazkis, R.& Sinclair, N. (2018). On Changing the Landscape: Ecclesiastes Vs. Heraclitus. (Part I -preface). In A. Kajander, J. Holt, & E. Chernoff (Eds.), Teaching and Learning Secondary School Mathematics - Canadian Perspectives in an International Context (pp. 3-6). New York, NY: Springer.

Zazkis, R. (2018). Ceci n'est pas une pratique: A commentary. In O. Buchbinder & S. Kuntze (Eds.), Mathematics teachers engaging with representations of practice. New York, NY: Springer.

Zazkis, R. (2018). 鈥淐anada is better鈥 鈥 An unexpected reaction to the order of operations in arithmetic.  In A. Kajander, J. Holt, & E. Chernoff (Eds.), Teaching and Learning Secondary School Mathematics - Canadian Perspectives in an International Context. New York, NY: Springer.

Zazkis, R. (2018). Dialogues on Numbers: Script-writing as approximation of practice. In G. Kaiser (Ed.), Invited Lectures from the 13th International Congress on Mathematical Education. New York, NY: Springer.

Zazkis. R. (2018). On the use of dialogues: Looking back and looking forward.  In R. Zazkis & P. Herbst (Eds.), Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice (pp. 389-398). New York, NY: Springer.

Zazkis, R., & Koichu, B. (2018). Dialogues on Dialogues: The use of classical dialogues in mathematics teacher education.  In R. Zazkis & P. Herbst (Eds.), Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice (pp. 375-387).  New York, NY: Springer.

Koichu, B. & Zazkis, R. (2018). 鈥淚 understand鈥 talk in script writing: A case from Euclid鈥檚 Elements. In R. Zazkis & P. Herbst (Eds.), Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice (pp. 163-184). New York, NY: Springer.

Kontorovich, I., & Zazkis, R. (2017). Evoking the feeling of uncertainty for enhancing conceptual knowledge. In C. Andr脿, D. Brunetto, E. Levenson and P. Liljedahl (Eds.), Teaching and learning in maths classrooms. Emerging themes in affect-related research: Teachers鈥 beliefs, students鈥 engagement and social interactions (pp. 187鈥196). Springer.

Sinclair, N. & Zazkis, R. (2017). Everybody counts: Designing tasks for TouchCounts. In A. Leung & A.  Baccaglini-Frank (Eds.). Digital Technologies in designing mathematics education tasks: Potential and pitfalls (pp. 175鈥191). New York, NY: Springer.  

Zazkis, R. & Mamolo, A. (2016.) On numbers: Concepts, operations and structure. In A. Gutierres., P. Boero & G. Leder.  (Eds. ), Second Handbook of Research on the Psychology of Mathematics Education (pp. 39鈥72). Rotterdam, Netherlands: Sense Publishers.  

Zazkis, D. & Zazkis, R. (2014). Wondering about wonder in mathematics. In M. Pitici (Ed.). The Best Writing on Mathematics (pp. 164鈥187). NJ: The Princeton University Press. (Reprinted from Wonder-full Education: The centrality of wonder in teaching and learning, New York: Routledge).

Jolfaee, S., Zazkis, R., & Sinclair, N. (2014). It is very, very random because it doesn鈥檛 happen very often: Examining learners鈥 discourse on randomness. In E. Chernoff (Ed.), Probabilistic thinking: Presenting plural perspectives (pp. 97鈥416). Dordrecht, Netherlands: Springer.

Mamolo, A & Zazkis, R. (2014). Contextual considerations in probabilistic situations: an aid or a hindrance? In E. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 641鈥656). Dordrecht, Netherlands: Springer.

Zazkis, D. & Zazkis, R. (2013). Wondering about wonder in mathematics. In A. Cant & K. Egan (Eds.), Wonder-full Education: The centrality of wonder in teaching and learning across the curriculum (66鈥85). Routledge.

Zazkis, R. & Leikin, R. (2010). Interludes: Mathematical pedagogy and pedagogical mathematics in learning through teaching. In R. Leikin & R. Zazkis (Eds.), Learning through Teaching Mathematics: Developing teachers鈥 knowledge and expertise in practice (pp. 87鈥89, 189鈥190). Springer.

Leikin, R. & Zazkis, R. (2010). Teachers鈥 opportunities to learn mathematics through teaching. In R. Leikin & R. Zazkis (Eds.), Learning through Teaching Mathematics: Developing teachers鈥 knowledge and expertise in practice (pp. 3鈥22). Dordrecht, Netherlands: Springer.

Zazkis, R. (2010). What have I learned: Mathematical insights and pedagogical implications. In R. Leikin & R. Zazkis (Eds.), Learning through Teaching Mathematics: Developing teachers鈥 knowledge and expertise in practice (pp. 91鈥110). Dordrecht, Netherlands: Springer.

Zazkis, R. & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education. In R. Leikin, B. Koichu & A. Berman (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp. 345鈥366). Sense Publishing.

Zazkis, R., Sinclair, N., & Liljedahl, P. (2009). Lesson Play 鈥 A vehicle for multiple shifts of attention in teaching. In S. Lerman and B. Davis. (Eds.), Mathematical Action & Structures Of Noticing: Studies inspired by John Mason (pp. 165鈥178). Sense Publishing.

Zazkis, R. (2008). Examples as tools in mathematics teacher education. In D. Tirosh (Ed.), Tools in Mathematics Teacher Education. (in Handbook for Mathematics Teacher Education, Vol. 2 (pp. 135鈥156). Sense Publishing.

Zazkis, R. (2008). Divisibility and transparency of number representations. In M. P. Carlson & C. Rasmussen (Eds.), Making the Connection: Research and practice in undergraduate mathematics (pp. 81鈥92). MAA notes.

 

Zazkis, R. & Liljedahl, P. (2006). On the path to number theory: Repeating patterns as a gateway. In R. Zazkis and S.R. Campbell (Eds.), Number Theory in mathematics education: Perspectives and prospects (pp. 99鈥114). Lawrence Erlbaum Press.

Zazkis, R. & Campbell, S.R. (2006). Number Theory in mathematics education research: Perspectives and prospects. In R. Zazkis and S.R. Campbell (Eds.), Number Theory in mathematics education: Perspectives and prospects (pp. 1鈥18). Lawrence Erlbaum Press.

Campbell, S. R., & Zazkis, R. (2002). Toward number theory as a conceptual field. In Campbell, S. R, & Zazkis, R. (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 1鈥14). Journal of Mathematical Behavior Monograph. Westport, CT: Ablex Publishing.

Edwards, L & Zazkis, R. (2002). Pre-service teachers鈥 generalizations on a number theory task. Campbell. S. R., & Zazkis, R. (Eds.), Learning and teaching number theory: Research in cognition and instruction (辫辫.139鈥156). Journal of Mathematical Behavior Monograph. Westport, CT: Ablex Publishing.

Zazkis, R. (2002) Language of number theory: Metaphor and rigor. Campbell. S. R., & Zazkis, R. (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 83鈥96). Journal of Mathematical Behavior Monograph. Westport, CT: Ablex Publishing.

Zazkis, R. & Gadowsky, K. (2001). Attending to transparent features of opaque representations of natural numbers. In A. Cuoco (Ed.), NCTM 2001 Yearbook: The roles of representation in school mathematics (pp. 41鈥52). Reston, VA: NCTM.

Leron, U. & Zazkis, R. (1992). Of Geometry, Turtles and Groups. In C. Holes & R. Noss (Eds.), Learning Mathematics and Logo, (pp. 319鈥352). MIT Press.

 

 

Print